
require.js Documentation
Release 1.0.1

Tomasz Grajewski

December 14, 2013

Contents

1 Introduction 1
1.1 What’s a module? . 1
1.2 Integrating require.js . 1
1.3 How to ‘create’ a module? . 2
1.4 Dependencies between modules . 3
1.5 An alternate syntax . 3

2 The ’settings’ module 5

3 Good practices 7

4 Differences from other popular implementations 9

5 API Reference 11

6 Testing 13

7 Version history 15

8 License 17

i

ii

CHAPTER 1

Introduction

If you have written code in other programming languages (like Python for example), then you already should know
what’s a module. require.js allows you to write your JavaScript code in a similar manner, to divide code into separate
modules and packages, clearly stating dependencies and relations between files. It’s very powerful idea, that will
change how you write code. Your code will become simpler, more readable and maintainable.

This solution is similar to the RequireJS, which does support asynchronous code loading. See also:

• AMD API wiki

• Why AMD? (Require.js)

• Dojo Tutorial: AMD Modules

If you are an advanced user of RequireJS, then you should know, that the solution described here is in many areas
different and many ‘features’ were not implemented on purpose. Summarizing this up: overall idea is very similar, but
API has many differences. This solution was inspired by the Python Philosophy.

1.1 What’s a module?

A module is a single JavaScript file, that is a collection of related functions or classes or both. In case of a more
complicated code a module may also contain only one class definition or only one function. Module should be a
reusable piece of code, that you will want to use in many software projects.

A package is a group of modules (usually somewhat related).

JavaScript at the time of writing this, doesn’t support any kind of modules or packages. We’ve borrowed this idea from
other programming languages to make writing complex JavaScript applications easier.

1.2 Integrating require.js

Dependencies: None. Supported browsers: All (IE8 and older with an Object.create() polyfill).

To add require.js to your site, just include it before any of your code and other libraries, like jQuery. This is done
usually at the end of the <body> tag:

1

https://github.com/amdjs/amdjs-api/wiki/AMD
http://requirejs.org/docs/whyamd.html
http://dojotoolkit.org/documentation/tutorials/1.8/modules/
http://www.python.org/dev/peps/pep-0020/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create

require.js Documentation, Release 1.0.1

...

<script src="scripts/require.js"></script> <!-- Add this line -->
<script src="scripts/settings.js"></script> <!-- This is optional, you need to create this file yourself -->

<!-- Other modules in your application. Note that third-party modules probably won’t be compatible with require.js -->
<script src="scripts/jquery.js"></script>
<script src="scripts/my_module.js"></script>
...

</body>
</html>

Note: require.js won’t load your modules asynchronously. This is on purpose, to reduce confusion and increase
performance of complicated applications. Ask your back end developer to merge all JavaScript modules to a single
file, this is done usually by using some third-party static files compressor.

1.3 How to ‘create’ a module?

To define a module, just create a JavaScript file, and write something like this:

define(’great_module’, function() {

// My module code goes here...
function myFunction() {

return 5;
}

// ’Export’ any things you want other developers (or you) should use.
return {’myFunction’: myFunction};

});

The function statement at the beginning of the above example is a simple way to make all your code private and
decide which functions and classes should be available to others using the return statement at the end of module
definition.

To use myFunction in other modules use the global require() function, which is somewhat similar to Python’s
import statement (at least the whole idea is similar).

// ’great_module’ must match with what was specified in the define() call above.
var greatModule = require(’great_module’);

greatModule.myFunction();

Below is a more practical example:

define(’numbers’, function() {

function radians(n) {
return n * Math.PI / 180;

}

function degrees(n) {
return n * 180 / Math.PI;

}

return {

2 Chapter 1. Introduction

require.js Documentation, Release 1.0.1

’radians’: radians,
’degrees’: degrees

};
});

Above is a simple module example with two functions that help converting angles between radians and degrees. When
you want to use these functions, again use require() anywhere in your code:

var numbers = require(’numbers’);

numbers.degrees(Math.PI);
numbers.radians(180);

1.4 Dependencies between modules

When you have code divided into many small modules it’s very important to explicitly state, how modules depend on
each other. This is usually written at the beginning of a module’s source code for readability. Using require.js you can
state dependencies in a define() call like this:

// Define a module and use some code from the ’numbers’ module without calling require().
define(’my_custom_module’, [’numbers’], function(numbers) {

// This is a space of an other module. Here you can use the numbers module from previous example.

function fullCircle() {
return numbers.radians(Math.PI * 2);

}

return {’fullCircle’: fullCircle}
});

In the above example the ’my_custom_module’ uses a ’numbers’ module, this is stated in the define()
call.

dependencies is just an array of module names that are required, so the current module can work.

define(moduleName, [dependencies], function(dependency1, dependency2, ...) {
...

});

1.5 An alternate syntax

You can also use a shorter syntax when you want to create module that’s a group of constants or functions.

define(’config’, {
’DEBUG’: true,
’FPS’: 60,
...

});

var config = require(’config’);

if (config.DEBUG)
...

1.4. Dependencies between modules 3

require.js Documentation, Release 1.0.1

4 Chapter 1. Introduction

CHAPTER 2

The ’settings’ module

You can define configuration options for your application in a ’settings’ module. Then, other modules will
reference this settings module and treat it as a central point of a run time configuration.

define(’settings’, {
// Used by require.js, defaults to true, used to toggle ’no conflict mode’ for jQuery.
’JQUERY_NO_CONFLICT’: false,

// Other custom, user-defined settings example:
’DEBUG’: true,
’ANIMATIONS’: true,
’FPS’: 60,
...

});

Although ’settings’ in the above example is a simple JavaScript object, when using it in other modules, require.js
gives you a getter function to ease development.

var settings = require(’settings’);

if (settings(’DEBUG’, false))
...

settings in this case is a function, that returns given named configuration options and in case of an unknown, not
defined options, this function returns a fallback value (the second argument).

5

require.js Documentation, Release 1.0.1

6 Chapter 2. The ’settings’ module

CHAPTER 3

Good practices

Below is a list of good practices, that when followed should somewhat increase code quality and readability.

1. Module names should match 1:1 to JavaScript file names (without extension). Module ’numbers’ should
reside in a file named numbers.js. Modules that are inside sub-directories should include those directories
in the module name. So a module numbers placed in a directory math should be named ’math/numbers’.

Usually file names are all lower case, also consider separating words with an underscore character. Actually
CamelCase in module names is not supported and when such module name is used, define() will throw an
exception.

2. Although everything in a module code is private, you should export as much as possible, so other developers
won’t have problems to reuse your code. When some variables or functions are considered internal, then you
may prepend an underscore character to their name, so other developers will know that they are messing with
some internals.

3. In case of many dependencies it’s recommended to write them using the require() function. Instead:

define(’my_module’, [’dep1’, ’dep1’, ’dep3’, ’dep4’, ...], function(dep1, dep2, dep3, dep4, ...) {
...

Write this:

define(’my_module’, function() {
var dep1 = require(’dep1’);
var dep2 = require(’dep2’);
var dep3 = require(’dep3’);
var dep4 = require(’dep4’);
...

The above notation is more verbose, but also more readable in case of many dependencies.

4. If your module needs to initialize itself in some way, it’s better if time of this initialization can be chosen at
run time. For example instead of adding event listeners to some DOM elements, you could write a pair if
functions install()/uninstall() or enable()/disable(), so other developers using your module
can decide when they want to initialize given libraries (probably as late as possible to improve loading time).

7

require.js Documentation, Release 1.0.1

8 Chapter 3. Good practices

CHAPTER 4

Differences from other popular
implementations

Simple. Just look at the source code, it’s just damn 2 simple functions. Actually it’s more error checking than actual
code.

Compatible. Well, almost. Syntax is very near to the RequireJS, so if you won’t like this solution or need more
features, then you should be able to painlessly swap implementations.

No asynchronous code loading. When dividing your project into many small modules you may end up with lots of
JavaScript files. Loading them into browser will be slow, so merging them to a single file is recommended.
What’s also recommended is to let your back end developers combine and compress JS files into single one.

Loading other files, like text, CSV files is also not possible. If you need these features then use RequireJS, but
it may also mean that you’re probably making your code complicated (hope you’ve a reason to!).

Cruft-free. No need to install any temporarily-popular servers, package managers, parsers and other useless stuff. It’s
just one JavaScript file.

Exceptions. define() and require() will throw meaningful exceptions that should ease you debugging in case
you get lost. No error should pass silently.

Small. Around 5 KB of code when uncompressed, mostly due to custom exception classes. Less than 1 KB com-
pressed and gzipped.

Settings. Standardizes one place to store all your app-wide configuration options, that your modules can leverage.

Bug-free. Seriously, the code is very simple, also lack of redundant or useless features helps in this regard.

jQuery support. You can toggle ‘no conflict mode’ in the settings module. Include jQuery after require.js and
after settings.js (if you have one).

Written with The Zen of Python in mind.

9

require.js Documentation, Release 1.0.1

10 Chapter 4. Differences from other popular implementations

CHAPTER 5

API Reference

define(moduleName[, dependencies], moduleCode)
Creates a module from moduleCode and stores it in the define.modules container for later retrieval with
require().

Arguments

• moduleName (string) – Must be a string with proper name. Allowed characters are
lower case letters, digits, underscores and slashes (when module nested in sub-directories).
moduleName should be an absolute path to a module, including the file name, but without
extension. This value must be unique, no two modules with the same name are allowed.

• dependencies (array) – Optional, can be specified only if moduleCode is a function.
dependencies must be an array of strings, where each string is name of some other
module. Each module must be loaded prior to this point and will be passed as an argument
to the function specified in moduleCode.

• moduleCode – Should be a callback function that returns module definition. It will be
called immediately and will receive all modules specified in dependencies as arguments.
moduleCode can be also any other object, which may prove useful in case of defining
application settings or other constant values.

Throws

• define.Error – When define() is called with dependencies specified, but
moduleCode is not a function.

• define.ArgumentCountError – When called with not enough or too many arguments.

• define.InvalidModuleNameError – When moduleName contains not allowed characters
or is empty or is not a string.

• define.InvalidModuleError – When moduleCode is undefined or it’s function that
doesn’t return anything.

• define.DuplicateModuleError – When given moduleName is already used by an other
module.

Returns undefined

require(moduleName)
Retrieves module from the internal module storage (IE. define.modules). moduleName must be a string.

Throws

11

require.js Documentation, Release 1.0.1

• require.Error – When given module specified in moduleName doesn’t exist (was not
defined).

• require.ArgumentsError – When arguments count is not one or moduleName is not a
string.

Returns module definition, that is any object stored previously with define() call.

12 Chapter 5. API Reference

CHAPTER 6

Testing

Tests are written using Jasmine framework. Just open the tests/SpecRunner.html file in any browser to run
tests.

13

http://pivotal.github.io/jasmine/

require.js Documentation, Release 1.0.1

14 Chapter 6. Testing

CHAPTER 7

Version history

v1.0.1 Added IE8 and IE7 support when an Object.create() polyfill is present.

v1.0.0 Initial release.

15

require.js Documentation, Release 1.0.1

16 Chapter 7. Version history

CHAPTER 8

License

The MIT License (MIT)

Copyright © 2013 Tomasz Grajewski

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sub license, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Jasmine © 2008-2013 Pivotal Labs

17

	Introduction
	What's a module?
	Integrating require.js
	How to `create' a module?
	Dependencies between modules
	An alternate syntax

	The 'settings' module
	Good practices
	Differences from other popular implementations
	API Reference
	Testing
	Version history
	License

